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Abslracl A neural network model with bipolar synaptic couplings b studied wilh a 
global constraint on the synapses which each neuron receives, corresponding to a bias of 
the couplings, When the network is used to store biased patterns, it is shown that the 
maximal storage capacity lor any non-zero bias of the stored pattems corresponds to a 
panicular type of the connectivily pattern of the network as encoded in the constraint. 
The ‘space of inleractions’ approach yields the dependence of storage capacity on the 
distribution of the couplings for every patlern bias. It turns out that the optimal coupling 
bias is non-zero and independent of the bias in the patterns. 

1. Introduction 

Neural network models have become popular for associative memory in recent years. 
In this paper, we investigate a particular class of neural network models, namely those 
with synaptic mnnection weights which take values in the discrete set {+l,-1}, also 
referred to as Ising bonds. This class of models has the advantage of ease of hardware 
implementation. Such a model was first studied in [l] using the ‘space of interactions’ 
method; it was found that the replica symmetric solution was unstable. The nature 
of the replica symmetry breaking was elucidated in [2] and the maximal capacity was 
found there to be about 0.83N, in agreement with the numerical evidence of [3 ,4] .  
Owing to the fact that replica symmetry in the space of interactions is broken, the 
maximal storage capacity corresponds to zero entropy in the space of interactions. 
In 1.51, the storage capacity for such networlci used to store biased patterns was 
determined as a function of the bias; it was established that for models with broken 
replica symmetry, the zero entropy condition provides an accurate estimate of the 
storage capacity. 

Here we answer the following question: What is the effect of the distribution of 
the signs of the synaptic couplings in the network on the storage capacity of biased 
patterns? For a network of N neurons in the large N limit, we study this question in 
the next section by imposing a constraint on the synaptic couplings which each neuron 
receives, namely that the sum of the synaptic couplings is proportional to 0, with 
the same constant of proportionality for all the neurons. This is a global constraint 
on the couplings which is a measure of the bias in the distribution of the signs of the 
couplings. A biological motivation for this question is to understand the significance 
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of Dale’s lawt in the context of human neurobiology. W i l e  the model we study here 
is not a faithful representation of Dale’s law, we nevertheless believe that our results 
support the general conjecture that there is an optimal distribution of the signs of 
the synaptic couplings which makes the storage of biased patterns efficient. 

In the next section, the model is formulated and the saddle point equations in 
the space of interactions are obtained. The saddle point equations for the model are 
solved numerically; as for the random pattem case, replica symmetry is broken and 
so the equations are solved for zero entropy in the space of interactions. We find 
that there is a distribution of the couplings which maximizes the storage capacity of 
biased patterns. Moreover, this distribution appears to be ‘universal’ in the sense that 
it is independent of the bias in the stored patterns (as long as it is non-zero), and 
depends only slightly on the size of the basin of attraction of the stored patterns. This 
raises the interesting possibility that a given optimal set of synaptic couplings might 
be able to store differently biased patterns simultaneously. The peaks in the storage 
capacity are sharper for patterns with larger hias. 

We end with a brief summaly of our results. 

2. Biased synapses and biased patterns 

The model we shall consider is a discrete state asynchronously updated neural network 
model with states si = il (i = 1,. . . , N) and the standard updating rule 

where the wSj are the synaptic weights. It is assumed, as usual, that wii = 0. We 
shall constrain the connection weights 20 to be bipolar, i.e. they are only allowed U, 

take the values A l .  
The fuced points of the model are those states which do not change under the 

updating rule (1); therefore such states satisfy [6] 

where K is a strictly positive number. The larger the value of IC, the bigger is the 
basin of attraction around the fixed point. We will assume that there are p = aN 
patterns or states {sf}, p = 1,. . . , p, to be stored. The condition for each pattem 
to be a fixed point is 

for p = 1,. . . , p. We assume that the stored patterns are all biased with the same 
bias m. This means that the probability p, of choosing a bit with value o from any 
one of the patterns is 

t This law is lhe empirical facl lhal the spaplie couplings of a single neuron in lhe nervous sylem are 
either all inhibilory or all excilatory. 
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The number m essentially measures the fractional excess of plus signs over minus 
signs in the patterns to be stored We further assume that the synaptic couplings 
which each neuron receives are constrained to have a bias 

j 

This is a global constraint on the input synapses of each neuron. The number r 
measures the excess of excitatory couplings over inhibitory ones; we shall call it the 
bias of the couplings. 

The partition function in the space of interactions [w] can be written as [6] (apart 
from an overall normalization) 

where the Hamiltonian 

measures the number of sites that are not fixed points and p is a 'temperature' 
parameter. Here p [w ]  is the density of states in the space of interactions; in our case 

In the p --t CO limit, Z is simply the number of states with energy zero 

so that in this limit the entropy of the zero energy state is 

The maximal storage capacity is reached when the entropy in interaction space 
becomes zero, since this means that there is only one set of U'S which maintain 
the patterns {si} as fixed points. The quantity of interest is therefore the entropy, 
averaged over the distribution of the stored patterns {sf}, since we are interested in 
the storage of general patterns governed by the distribution p,. The expression for 
the averaged entropy ((S)) then becomes 
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with 

since the rows of the matrix wij  are independent. 
The replica trick can be used to evaluate the quantity ((Inni)) 

Introducing replicas w;~  (a  = 1,. . . , n), we have 

This expression can be evaluated in the saddle point approximation for N -* 03, as 
is well known. Introducing an integral representation for the step function, averaging 
over the spins sf, and introducing delta functions with additional variables Fab and 
P, to enforce the constraint for the order parameter 

and the constraint for the incoming synapses 

N 1 
p =  - 

Ai 

respectively, the expression for ((07)) becomes 

Here the brackets (. . .) indicate that an average over sf remains to be performed, 
and G,(qab,r6) is given by 
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Using the ansatz of replica symmetry, qab = q, and taking the average over sQ, the 
expression for G, reduces, in a standard manner, to 

where Dz is the Gaussian measure Dz 
complementary error function 

e-zzIzdz/&, and the function H is the 

m H ( r ) = l  Dz. 
The variables 7- and T~ are defined by 

and 

d i Y 7 .  K + m r )  
7+ = (1 - q) -112 (z& + 

Timking into account the constraint that w i j  = 51, G, is determined by 

(24) 
W ' = + l  a o < b  ) I " .  

exp ( F z w ' w b  - PEW" a )  

eNGz = [ exp ( i c P a w a  -ic Fo6wowb 

Making the replica symmetric ansatz Fab = iF and Pa = iP, we need to evaluate 
the expression 

(25) 
w'=fl 

where the sum is over all possible distributions of the w's over the discrete set 
{+I, - - 1). This expression evaluates, in the small n limit, to 

(1 + n In 2 + 2 Du (In cosh( u f i  - P) + In cosh( ufi + P)) 
2 -m 

Now we can evaluate the entropy in the saddle point approximation for N -+ m; 
the saddle point is determined by the stationary conditions 

d G  d G  dG 
d P  - d F  - dq 

where 

n(n - 1) 
2 q F. G = aG, + G2 - 
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First, the condition BG/BP = 0 yields P = 0. Then for small n, we get (apart from 
a constant which is cancelled by a contribution coming from the normalization of 2) 

W + n 1, Du In coshufi  (29) 
n F  G, -1 

so that the saddle point condition 8G/BF = 0 gives 

Dutanhufi  = 1 - q .  d 
The third saddle point condition dG/Bq = 0 yields 

where r- and rt were defined earlier. 
Now the replica symmetric value q -t 1 corresponds to an unstable solution, and, 

in addition, the corresponding entropy is negative. As was shown in [2,5], the correct 
solution corresponding to maximal storage must be determined by the zero entropy 
solution, which is also a stable solution for this model [2,5]. 

The entropy averaged over the stored patterns is 

+ F T + L  4 -  1 Du Incoshufi] 

The zero entropy equation is then 

Equations (30), (31), and (33) must be solved together to determine the maximal 
storage capacity a,,,. 

These equations can be solved numerically. We have solved them using a method 
of interval halving for various values of m and K, to an accuracy of about 0.02 in a. 
Figure 1 shows the storage capacity as a function of the coupling bias for K = 0; the 
pattern bias values m are 0.2, 0.4, 0.6 and 0.8, with larger values of m leading to 
higher peaks. 

Figures 2, 3 and 4 show the capacity as a function of coupling bias for m = 0.2, 
m = 0.6 and m = 0.8 respectively. The three curves in each figure are for values of 
n equal to 0, 1 and 2, with smaller peaks corresponding to larger values of n. 
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I 

Figure 1. The storage capacily as a funclion of r for n = 0 and m = 0.2,0.4,0.6 and 
0.8; the higher peaks are for larger values of m. 
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Figure I ?he storage capacity as a function of r for m = 0.2 and K = 0.1 and 2; the 
upper curves are for the smaller values of K .  

The interesting fact that emerges from these solutions is that for every value 
of n, the storage capacity is optimal for a value of bias in the couplings which is 
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Figure 3. The storage capacity as a function of r for m = 0.6 and K =0, 1 and 2; the 
upper cuwes are for the smaller values of IC. 

Figure 4. The storage capacity as a function of r for m = 0.8 and IC = 0 , l  and 2; the 
upper C U N ~  are for the smaller values of K.  

independent of the bias in the patterns, as long as m is non-zero. For random 
patterns (m = 0) of course the maximum capacity amax = 0.83 is independent of 
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the coupling bias r, as is evident from equations (31) and (33), since r drops out of 
equations (22) and (23) when m = 0. For 6 = 0, it can be seen from figure 1 that 
T = 1 is an optimal value for the coupling bias. The optimal value of r increases 
slightly to about 2 as K increases to 2, as can be seen from the smallest peaks in 
figures 2,3 and 4. 

The peaks in the storage capacity are sharper for patterm which are more severely 
biased, indicating that only a narrow range of coupling bias values store these patterns 
efficiently. Further, the capacity is independent of the sign of the pattern bias m since 
the relevant equations (31) and (33) are invariant under m --t -m. 

3. Conclusions 

We conclude by summarizing our results. We have investigated the dependence of the 
storage capacity on the distribution of the signs of the couplings in a bipolar neural 
network model. We find that there is a value of the coupling bias which maximizes 
the storage capacity independently of the bias of the stored patterns. The peak in 
the storage capacity is higher and narrower for more strongly biased pattems. It 
seems plausible that the existence of such an optimal distribution of couplings, for 
biased patterns, persists in more general networb as well. This jssue is under further 
investigation and the results will be reported elsewhere. 
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